
\def\zigzag{\psline(0,0)(.5,1)(1.5,-1)(2,0)}%

\psset{unit=.25,linewidth=1.5pt}

\multips(0,0)(2,0){8}{\zigzag}

PSTricks is distributed with a much more general loop macro, called

\multido. You must input the file multido.tex or multido.sty. See the
multido documentation multido.doc for details. Here is a sample of what you can

do:

\begin{pspicture}(-3.4,-3.4)(3.4,3.4)

\newgray{mygray}{0} % Initialize ‘mygray’ for benefit

\psset{fillstyle=solid,fillcolor=mygray} % of this line.

\SpecialCoor

\degrees[1.1]

\multido{\n=0.0+.1}{11}{%

\newgray{mygray}{\n}

\rput{\n}{\pswedge{3}{-.05}{.05}}

\uput{3.2}[\n](0,0){\small\n}}

\end{pspicture}

0.0

0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8
0.9

1.0

All of these loop macros can be nested.

26 Axes

The axes command described in this section is defined in pst-plot.tex /
pst-plot pst-plot.sty, which you must input first. pst-plot.tex, in turn, will auto-

matically input multido.tex, which is used for putting the labels on the

axes.

Axes 47

The macro for making axes is:

\psaxes*[par]{arrows}(x0,y0)(x1,y1)(x2,y2)

The coordinates must be Cartesian coordinates. They work the same

way as with \psgrid. That is, if we imagine that the axes are enclosed

in a rectangle, (x1,y1) and (x2,y2) are opposing corners of the rectangle.

(I.e., the x-axis extends from x1 to x2 and the y-axis extends from y1 to

y2.) The axes intersect at (x0,y0). For example:

0 1 2 3 4

0

1

2

3

(x2,y2)
(x0,y0)

(x1,y1)

\psaxes[linewidth=1.2pt,labels=none,

ticks=none]{<->}(2,1)(0,0)(4,3)

If (x0,y0) is omitted, then the origin is (x1,y1). If both (x0,y0) and (x1,y1)

are omitted, (0,0) is used as the default. For example, when the axes

enclose a single orthont, only (x2,y2) is needed:

0 1 2 3
0

1 \psaxes{->}(4,2)

Labels (numbers) are put next to the axes, on the same side as x1 and

y1. Thus, if we enclose a different orthont, the numbers end up in the

right place:

0 1 2 3
0

-1
\psaxes{->}(4,-2)

Also, if you set the arrows parameter, the first arrow is used for the tips

at x1 and y1, while the second arrow is used for the tips at x2 and y2.

Thus, in the preceding examples, the arrowheads ended up in the right

place too.12

12Including a first arrow in these examples would have had no effect because arrows

are never drawn at the origin.

Axes 48

When the axes don’t just enclose an orthont, that is, when the origin

is not at a corner, there is some discretion as to where the numbers

should go. The rules for positioning the numbers and arrows described

above still apply, and so you can position the numbers as you please by

switching y1 and y2, or x1 and x2. For example, compare

0 1 2-1-2

1

2

\psaxes{<->}(0,0)(-2.5,0)(2.5,2.5)

with what we get when x1 and x2 are switched:

0-1-2 1 2

1

2

\psaxes{<->}(0,0)(2.5,0)(-2.5,2.5)

\psaxes puts the ticks and numbers on the axes at regular intervals, using

the following parameters:

Horitontal Vertical Dflt Description

Ox=num Oy=num 0 Label at origin.

Dx=num Dy=num 1 Label increment.

dx=dim oy=dim 0pt Dist btwn labels.

When dx is 0, Dx\psxunit is used instead, and similarly for dy. Hence,

the default values of 0pt for dx and dy are not as peculiar as they seem.

You have to be very careful when setting Ox, Dx, Oy and Dy to non-

integer values. multido.tex increments the labels using rudimentary

fixed-point arithmetic, and it will come up with the wrong answer un-

less Ox and Dx, or Oy and Dy, have the same number of digits to the

right of the decimal. The only exception is that Ox or Oy can always

be an integer, even if Dx or Dy is not. (The converse does not work,

however.)13

13For example, Ox=1.0 and Dx=1.4 is okay, as is Ox=1 and Dx=1.4, but Ox=1.4 and

Dx=1, or Ox=1.4 and Dx=1.15, is not okay. If you get this wrong, PSTricks won’t

complain, but you won’t get the right labels either.

Axes 49

Note that \psaxes’s first coordinate argument determines the physical

position of the origin, but it doesn’t affect the label at the origin. E.g., if

the origin is at (1,1), the origin is still labeled 0 along each axis, unless

you explicitly change Ox and Oy. For example:

-2 -1 0 1 2
0

1

2

3

\psaxes[Ox=-2](-2,0)(2,3)

The ticks and labels use a few other parameters as well:

labels=all/x/y/none Default: all

To specify whether labels appear on both axes, the x-axis, the

y-axis, or neither.

showorigin=true/false Default: true

If true, then labels are placed at the origin, as long as the label

doesn’t end up on one of the axes. If false, the labels are never

placed at the origin.

ticks=all/x/y/none Default: all

To specify whether ticks appear on both axes, the x-axis, the

y-axis, or neither.

tickstyle=full/top/bottom Default: full

For example, if tickstyle=top, then the ticks are only on the side

of the axes away from the labels. If tickstyle=bottom, the ticks

are on the same side as the labels. full gives ticks extending on

both sides.

ticksize=dim Default: 3pt

Ticks extend dim above and/or below the axis.

The distance between ticks and labels is \pslabelsep, which you can

change with the labelsep parameter.

The labels are set in the current font (ome of the examples above were

preceded by \small so that the labels would be smaller). You can do

fancy things with the labels by redefining the commands:

Axes 50

\psxlabel

\psylabel

E.g., if you want change the font of the horizontal labels, but not the

vertical labels, try something like

\def\psxlabel#1{\small #1}

You can choose to have a frame instead of axes, or no axes at all (but

you still get the ticks and labels), with the parameter:

axesstyle=axes/frame/none Default: axes

The usual linestyle, fillstyle and related paremeters apply.

For example:

0-0.5-1.0-1.5
0

1

2

3

\psaxes[Dx=.5,dx=1,tickstyle=top,axesstyle=frame](-3,3)

The \psaxes macro is pretty flexible, but PSTricks contains some other

tools for making axes from scratch. E.g., you can use \psline and

\psframe to draw axes and frames, respectively, \multido to generate

labels (see the documentation for multido.tex), and \multips to make

ticks.

Axes 51

VI Text Tricks

27 Framed boxes

The macros for framing boxes take their argument, put it in an \hbox, and

put a PostScript frame around it. (They are analogous to LaTEX’s \fbox).

Thus, they are composite objects rather than pure graphics objects. In

addition to the graphics parameters for \psframe, these macros use the

following parameters:

framesep=dim Default: 3pt

Distance between each side of a frame and the enclosed box.

boxsep=true/false Default: true

When true, the box that is produced is the size of the frame or

whatever that is drawn around the object. When false, the box that

is produced is the size of whatever is inside, and so the frame is

“transparent” to TEX. This parameter only applies to \psframebox,

\pscirclebox, and \psovalbox.

Here are the three box-framing macros:

\psframebox*[par]{stuff}

A simple frame (perhaps with rounded corners) is drawn using

\psframe. The * option is of particular interest. It generates a solid

frame whose color is fillcolor (rather than linecolor, as with the

closed graphics objects). Recall that the default value of fillcolor

is white, and so this has the effect of blotting out whatever is

behind the box. For example,

Label

\pspolygon[fillcolor=gray,fillstyle=crosshatch*](0,0)(3,0)

(3,2)(2,2)

\rput(2,1){\psframebox*[framearc=.3]{Label}}

Text Tricks 52

\psdblframebox*[par]{stuff}

This draws a double frame. It is just a variant of \psframebox,

defined by

\newpsobject{psdblframebox}{psframebox}{doublesep=\pslinewidth}

For example,

\psdblframebox[linewidth=1.5pt]{%

\parbox[c]{6cm}{\raggedright A double frame is drawn

with the gap between lines equal to {\tt doublesep}}}

A double frame is drawn with the

gap between lines equal to doublesep

\psshadowbox*[par]{stuff}

This draws a single frame, with a shadow.

Great Idea!! \psshadowbox{\bf Great Idea!!}

You can get the shadow with \psframebox just be setting the

shadowsize parameter, but with \psframebox the dimensions of

the box won’t reflect the shadow (which may be what you want!).

\pscirclebox*[par]{stuff}

This draws a circle. With boxsep=true, the size of the box is close

to but may be larger than the size of the circle. For example:

You are

here

\pscirclebox{\begin{tabular}{c} You are \\ here \end{tabular}}

\cput*[par]{angle}(x,y){stuff}

This combines the functions of \pscirclebox and \rput. It is like

\rput{<angle>}(x0,y0){\string\pscirclebox*[<par>]{<stuff>}}

but it is more efficient. Unlike the \rput command, there is no

argument for changing the reference point; it is always the center

of the box. Instead, there is an optional argument for changing

graphics parameters. For example

Framed boxes 53

0 1 2

0

1

K1 \cput[doubleline=true](1,.5){\large K_1}

\psovalbox*[par]{stuff}

This draws an ellipse. If you want an oval with square sides and

rounded corners, then use \psframebox with a positive value for

rectarc or linearc (depending on whether cornersize is relative or

absolute). Here is an example that uses boxsep=false:

At the introductory

price of $13.99, it

pays to act now!

At the introductory price of

\psovalbox[boxsep=false,linecolor=darkgray]{\$13.99},

it pays to act now!

You can define variants of these box framing macros using the \newp-

sobject command.

If you want to control the final size of the frame, independently of the

material inside, nest stuff in something like LaTEX’s \makebox command.

28 Clipping

The command

\clipbox[dim]{stuff}

puts stuff in an \hbox and then clips around the boundary of the box, at

a distance dim from the box (the default is 0pt).

The \pspicture environment also lets you clip the picture to the boundary.

The command

\psclip{graphics} … \endpsclip

sets the clipping path to the path drawn by the graphics object(s), until

the \endpsclip command is reached. \psclip and \endpsclip must be

properly nested with respect to TEX grouping. Only pure graphics (those

described in Part II and \pscustom) are permitted. An Overfull \hbox

warning indicates that the graphics argument contains extraneous output

or space. Note that the graphics objects otherwise act as usual, and

the \psclip does not otherwise affect the surrounded text. Here is an

example:

Clipping 54

“One of the best new plays

I have seen all year: cool,

poetic, ironic …” proclaimed

The Guardian upon the Lon-

don premiere of this extraordi-

nary play about a Czech direc-

\parbox{4.5cm}{%

\psclip{\psccurve[linestyle=none](-3,-2)

(0.3,-1.5)(2.3,-2)(4.3,-1.5)(6.3,-2)(8,-1.5)(8,2)(-3,2)}

‘‘One of the best new plays I have seen all year: cool, poetic,

ironic \ldots” proclaimed {\em The Guardian} upon the London

premiere of this extraordinary play about a Czech director and

his actress wife, confronting exile in America.\vspace{-1cm}

\endpsclip}

If you don’t want the outline to be painted, you need to include linestyle=none

in the parameter changes. You can actually include more than one graph-

ics object in the argument, in which case the clipping path is set to the

intersection of the paths.

\psclip can be a useful tool in picture environments. For example, here

it is used to shade the region between two curves:

0 1 2 3 4
0

1

2

3

4

\psclip{%

\pscustom[linestyle=none]{%

\psplot{.5}{4}{2 x div}

\lineto(4,4)}

\pscustom[linestyle=none]{%

\psplot{0}{3}{3 x x mul 3 div sub}

\lineto(0,0)}}

\psframe*[linecolor=gray](0,0)(4,4)

\endpsclip

\psplot[linewidth=1.5pt]{.5}{4}{2 x div}

\psplot[linewidth=1.5pt]{0}{3}{3 x x mul 3 div sub}

\psaxes(4,4)

Driver notes: The clipping macros use \pstverbscale and \pstVerb. Don’t be

surprised if PSTricks’s clipping does not work or causes problem—it is never

robust. \endpsclip uses initclip. This can interfere with other clipping operations,

and especially if the TEX document is converted to an Encapsulated PostScript

file. The command \AltClipMode causes \psclip and \endpsclip to use gsave

and grestore instead. This bothers some drivers, such as NeXTTeX’s TeXView,

especially if \psclip and \endpsclip do not end up on the same page.

29 Rotation and scaling boxes

There are versions of the standard box rotation macros:

\rotateleft{stuff }

Rotation and scaling boxes 55

\rotateright{stuff}

\rotatedown{stuff}

stuff is put in an \hbox and then rotated or scaled, leaving the appropriate

amount of spaces. Here are a few uninteresting examples:
L

ef
t

Down

R
ig

h
t

\Large\bf \rotateleft{Left} \rotatedown{Down} \rotateright{Right}

There are also two box scaling macros:

\scalebox{num1 num2}{stuff}

If you give two numbers in the first argument, num1 is used to

scale horizontally and num2 is used to scale vertically. If you give

just one number, the box is scaled by the same in both directions.

You can’t scale by zero, but negative numbers are OK, and have

the effect of flipping the box around the axis. You never know

when you need to do something like this (\scalebox{-1 1}{this}).

\scaleboxto(x ,y){stuff}

This time, the first argument is a (Cartesian) coordinate, and the

box is scaled to have width x and height (plus depth) y. If one of

the dimensions is 0, the box is scaled by the same amount in both

directions. For example:

Big and long \scaleboxto(4,2){Big and long}

PSTricks defines LR-box environments for all these box rotation and

scaling commands:

\pslongbox{Rotateleft}{\rotateleft}

\pslongbox{Rotateright}{\rotateright}

\pslongbox{Rotatedown}{\rotatedown}

\pslongbox{Scalebox}{\scalebox}

\pslongbox{Scaleboxto}{\scaleboxto}

Here is an example where we \Rotatedown for the answers to exercises:

Rotation and scaling boxes 56

Question: How do

Democrats organize a

firing squad?

Answer:Firsttheygetin

acircle,…

Question: How do Democrats organize a firing squad?

\begin{Rotatedown}

\parbox{\hsize}{Answer: First they get in a circle, \ldots\hss}%

\end{Rotatedown}

See the documentation of fancybox.sty for tips on rotating a LaTEX table

or figure environment, and other boxes.

Rotation and scaling boxes 57

VII Nodes and Node Connections

All the commands described in this part are contained in the file pst-
pst-node node.tex/pst-node.sty.

The node and node connection macros let you connect information

and place labels, without knowing the exact position of what you are

connecting or of where the lines should connect. These macros are

useful for making graphs and trees, mathematical diagrams, linguistic

syntax diagrams, and connecting ideas of any kind. They are the trickiest

tricks in PSTricks!

Although you might use these macros in pictures, positioning and rotat-

ing them with \rput, you can actually use them anywhere. For example,

I might do something like this in a guide about page styles:

With the myfooters page

style, the name of the

current section appears

at the bottom of each

page.

\makeatletter

\gdef\ps@temp{\def\@oddhead{}\def\@evenhead{}

\def\@oddfoot{\small\sf

\ovalnode[boxsep=false]{A}{\rightmark}

\nccurve[ncurv=.5,angleB=240,angleA=180,nodesep=6pt]{<-}{A}{B}

\hfil\thepage}

\let\@evenfoot\@oddfoot}

\makeatother

\thispagestyle{temp}

With the {\tt myfooters} page style, the name of the current section

appears at the bottom of each \rnode{B}{page}.

You can use nodes in math mode and in alignment environments as well.

Here is an example of a commutative diagram:

Nodes and Node Connections 58

A

B C

f g

h

$

\begin{array}{c@{\hskip 1cm}c}

& \rnode{a}{A}\\[2cm]

\rnode{b}{B} & \rnode{c}{C}

\end{array}

\psset{nodesep=3pt}

\everypsbox{\scriptstyle}

\ncline{->}{a}{b}\Bput{f}

\ncline{->}{a}{c}\Aput{g}

\ncline[linestyle=dotted]{->}{b}{c}\Aput{h}

$

There are three components to the node macros:

Node definitions The node definitions let you assign a name and shape

to an object. See Section 30.

Node connections The node connections connect two nodes, identified

by their names. See Section 31.

Node labels The node label commands let you affix labels to the node

connections. See Section 32.

30 Nodes

The name of a node must contain only letters and numbers, and must

begin with a letter.

PS Warning: Bad node names can cause PostScript errors.

\rnode[refpoint]{name}{stuff}

This assigns the name to the node, which will have a rectangular

shape for the purpose of making connections, with the “center”

at the reference point (i.e., node connections will point to the

reference point. \rnode was used in the two examples above.

\Rnode(x ,y){name}{stuff}

This is like \rnode, but the reference point is calculated differently.

It is set to the middle of the box’s baseline, plus (x,y). If you omit

the (x,y) argument, command

\RnodeRef

Nodes 59

is substituted. The default definition of \RnodeRef is 0,.7ex. E.g,

the following are equivalent:

\Rnode(0,.6ex){stuff}

{\def\RnodeRef{0,.6ex}\Rnode{stuff}}

\Rnode is useful when aligning nodes by their baaelines, such as in

commutative diagrams. With \rnode horizontal node connections

might not be quite horizontal, because of differences in the size

of letters.

\pnode(x ,y){name}

This creates a zero dimensional node at the point (x,y) (default

(0,0)).

\cnode*[par](x ,y){radius}{name}

This draws a circle and assigns the name to it.

\circlenode*[par]{name}{stuff}

This is a variant of \pscirclebox that gives the node the shape of

the circle.

\cnodeput*[par]{angle}(x ,y){name}{stuff}

This is a variant of \cput that gives the node the shape of the

circle.

\ovalnode*[par]{name}{stuff}

This is a variant of \psovalbox that gives the node the shape of

the ellipse.

The reason that there is no \framenode command is that using \psframe-

box (or \psshadowbox or \psdblframebox) in the argument of \rnode

gives the desired result.

31 Node connections

All the node connection commands begin with nc, and they all have the

same syntax:

\<nodeconnection>[<par>]{<arrows>}{<nodeA>}{<nodeB>}

Node connections 60

A line of some sort is drawn from nodeA to nodeB. Some of the node

connection commands are a little confusing, but with a little experimen-

tation you will figure them out, and you will be amazed at the things

you can do.

The node and point connections can be used with \pscustom. The

beginning of the node connection is attached to the current point by a

straight line, as with \psarc.14

When we refer to the A and B nodes below, we are referring only to the

order in which the names are given as arguments to the node connection

macros.

When a node name cannot be found on the same page as the node

connection command, you get either no node connection or a nonsense

node connection. However, TEX will not report any errors.

The node connections use the following parameters:

nodesep=dim Default: 0

The border around the nodes added for the purpose of determining

where to connect the lines.

offset=dim Default: 0

After the node connection point is calculated, it is shift up for

nodeA and down for nodeB by dim, where “up” and “down”

assume that the connecting line points to the right from the node.

arm=dim Default: 10pt

Some node connections start with a segment of length dim before

turning somewhere.

angle=angle Default: 0

Some node connections let you specify the angle that the node

connection should connect to the node.

arcangle=angle Default: 8

This applies only to \ncarc, and is described below.

ncurv=num Default: .67

This applies only to \nccurve and \pccurve, and is described

below.

14See page 71 if you want to use the nodes as coordinates in other PSTricks macros.

Node connections 61

loopsize=dim Default: 1cm

This applies only the \ncloop and \pcloop, and is described below.

You can set these parameters separately for the two nodes. Just add an

A or B to the parameter name. E.g.

\psset{nodesepA=3pt, offsetA=5pt, offsetB=3pt, arm=1cm}

sets nodesep for the A node, but leaves the value for the B node un-

changed, sets offset for the A and B nodes to different values, and sets

arm for the A and B nodes to the same value.

Don’t forget that by using the border parameter, you can create the

impression that one node connection passes over another.

Here is a description of the individual node connection commands:

\ncline*[par]{arrows}{nodeA}{nodeB}

This draws a straight line between the nodes. Only the offset and

nodesep parameters are used.

Idea 1

Idea 2

\rput[bl](0,0){\rnode{A}{Idea 1}}

\rput[tr](4,3){\rnode{B}{Idea 2}}

\ncline[nodesep=3pt]{<->}{A}{B}

\ncLine*[par]{arrows}{nodeA}{nodeB}

This is like \ncline, but the labels (with \lput, etc) are positioned

as if the line began and ended at the center of the nodes. This is

useful if you have multiple parallel lines and you want the labels

to line up, even though the nodes are of varying size, e.g., in

commutative diagrams.

\nccurve*[par]{arrows}{nodeA}{nodeB}

This draws a bezier curve between the nodes. It uses the nodesep,

offset, angle and ncurv parameters.

Node A

Node B

\rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}

\rput[tr](4,3){\ovalnode{B}{Node B}}

\nccurve[angleB=180]{A}{B}

Node connections 62

\ncarc*[par]{arrows}{nodeA}{nodeB}

This is actually a variant of \nccurve. I.e., it also connects the

nodes with a bezier curve, using the nodesep, offset, and ncurv

parameters. However, the curve connects to node A at an angle

arcangleA from the line between A and B, and connects to node B

at an angle -arcangleB from the line between B and A. For small,

equal values of angleA and angleB (e.g., the default value of 8)

and with the default value of ncurv, the curve approximates an

arc of a circle. \ncarc is a nice way to connect two nodes with

two lines.

X

Y \cnodeput(0,0){A}{X}

\cnodeput(3,2){B}{Y}

\psset{nodesep=3pt}

\ncarc{->}{A}{B}

\ncarc{->}{B}{A}

\ncbar*[par]{arrows}{nodeA}{nodeB}

First, lines are drawn attaching to both nodes at an angle angleA

and of lengths armA and armB. Then one of the arms is extended

so that when the two are connected, the finished line contains 3

segments meeting at right angles. Generally, the whole line has

three straight segments. The value of linearc is used for rounding

the corners.

Connect some words!
\rnode{A}{Connect} some \rnode{B}{words}!

\ncbar[nodesep=3pt,angle=-90]{<-**}{A}{B}

\ncdiag*[par]{arrows}{nodeA}{nodeB}

First, the arms are drawn using angle and arm. Then they are

connected with a straight line. Generally, the whole line has three

straight segments. The value of linearc is used for rounding the

corners.

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncdiag[angleA=-90,angleB=90,arm=.5,linearc=.2]{A}{B}

Node connections 63

\ncdiagg*[par]{arrows}{nodeA}{nodeB}

This is similar to \ncdiag, but only the arm for node A is drawn.

The end of this arm is then connected directly to node B. The

connection typically has two segments. The value of linearc is

used for rounding the corners.

H

T

\cnode(0,0){4pt}{a}

\rput[l](3,1){\rnode{b}{H}}

\rput[l](3,-1){\rnode{c}{T}}

\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{b}{a}

\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{c}{a}

\ncangle*[par]{arrows}{nodeA}{nodeB}

The node connection points are determined by angleA and angleB

(and nodesep and offset). Then an arm is drawn for node B using

armB. This arm is connected to node A by a right angle, that also

meets node A at angle angleA. Generally, the whole line has three

straight segments, but it can have fewer. The value of linearc is

used for rounding the corners. Simple, right? Here is an example:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangle[angleA=-90,angleB=90,arm=.4cm,

linestyle=dashed]{A}{B}

\ncangles*[par]{arrows}{nodeA}{nodeB}

This is similar to \ncangle, but both armA and armB are used.

The arms are connected by a right angle that meets arm A at a

right angle as well. Generally there are four segments (hence one

more angle than \ncangle, and hence the s in \ncangles). The

value of linearc is used for rounding the corners. Compare this

example with the previous one:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangles[angleA=-90,arm=.4cm,linearc=.15]{A}{B}

Node connections 64

\ncloop*[par]{arrows}{nodeA}{nodeB}

The first segment is armA, then it makes a 90 degree turn to the

left, drawing a segment of length loopsize. The next segment is

again at a right angle; it connects to armB. For example:

A loop
\rnode{a}{\psframebox{\Huge A loop}}

\ncloop[angleB=180,loopsize=1,arm=.5,linearc=.2]{->}{a}{a}

\nccircle*[par]{arrows}{node}{radius}

This draws a circle from a node to itself. It is the only node

connection command of this sort. The circle starts at angle an-

gleA and goes around the node counterclockwise, at a distance

nodesepA from the node.

The node connection commands make interesting drawing tools as well,

as an alternative to \psline for connecting two points. There are variants

of the node connection commands for this purpose. Each begins with

pc (for “point connection”) rather than nc. E.g.,

\pcarc{<->}(3,4)(6,9)

gives the same result as

\pnode(3,4){A}\pnode(6,9){B}\pcarc{<->}{A}{B}

Only \ncLine and \nccircle do not have pc variants:

\pcline*[par]{arrows}(x1,y1)(x2,y2)

Like \ncline.

\pccurve*[par]{arrows}(x1,y1)(x2,y2)

Like \nccurve.

\pcarc*[par]{arrows}(x1,y1)(x2,y2)

Like \ncarc.

\pcbar*[par]{arrows}(x1,y1)(x2,y2)

Like \ncbar.

\pcdiag*[par]{arrows}(x1,y1)(x2,y2)

Like \ncdiag.

Node connections 65

\pcangle*[par]{arrows}(x1,y1)(x2 ,y2)

Like \ncangle.

\pcloop*[par]{arrows}(x1,y1)(x2,y2)

Like \ncloop.

32 Attaching labels to node connections

Now we come to the commands for attaching labels to the node con-

nections. The node label command must come right after the node

connection to which the label is to be attached. You can attach more

than one label to a node connection, and a label can include more nodes.

The node label commands must end up on the same TEX page as the

node connection to which the label corresponds.

The coordinate argument in other PSTricks put commands is a single

number in the node label commands: (pos). This number selects a point

on the node connection, roughly according to the following scheme:

Each node connection has potentially one or more segments, including

the arms and connecting lines. A number pos between 0 and 1 picks

a point on the first segment from node A to B, (fraction pos from the

beginning to the end of the segment), a number between 1 and 2 picks

a number on the second segment, and so on. Each node connection has

its own default value of the positioning coordinate, which is used by

some short versions of the label commands.

Here are the details for each node connection:

Connection Segments Range Default

\ncline 1 0≤pos≤1 0.5

\nccurve 1 0≤pos≤1 0.5

\ncarc 1 0≤pos≤1 0.5

\ncbar 3 0≤pos≤3 1.5

\ncdiag 3 0≤pos≤3 1.5

\ncdiagg 2 0≤pos≤2 0.5

\ncangle 3 0≤pos≤3 1.5

\ncloop 5 0≤pos≤4 2.5

\nccircle 1 0≤pos≤1 0.5

There is another difference between the node label commands and other

put commands. In addition to the various ways of specifying the angle

Attaching labels to node connections 66

of rotation for \rput, with the node label commands the angle can be

of the form {:angle}. In this case, the angle is calculated after rotating

the coordinate system so that the node connection at the position of the

label points to the right (from nodes A to B). E.g., if the angle is {:U},

then the label runs parallel to the node connection.

Here are the node label commands:

\lput*[refpoint]{rotation}(pos){stuff}

The l stands for “label”. Here is an example illustrating the use

of the optional star and :angle with \lput, as well as the use of the

offset parameter with \pcline:

Length \pspolygon(0,0)(4,2)(4,0)

\pcline[offset=12pt]{|-|}(0,0)(4,2)

\lput*{:U}{Length}

(Remember that with the put commands, you can omit the coor-

dinate if you include the angle of rotation. You are likely to use

this feature with the node label commands.)

With \lput and \rput, you have a lot of control over the position of

the label. E.g.,

label \pcline(0,0)(4,2)

\lput{:U}{\rput[r]{N}(0,.4){label}}

puts the label upright on the page, with right side located .4

centimeters “above” the position .5 of the node connection (above

if the node connection points to the right). However, the \aput

and \bput commands described below handle the most common

cases without \rput.15

15There is also an obsolete command \Lput for putting labels next to node connec-

tions. The syntax is

\Lput{<labelsep>}[<refpoint>]{<rotation>}(<pos>){<stuff>}

It is a combination of \Rput and \lput, equivalent to

\lput(<pos>){\Rput{<labelsep>}[<refpoint>]{<rotation>}(0,0){<stuff>}}

\Mput is a short version of \Lput with no {rotation} or (pos) argument. \Lput and

\Mput remain part of PSTricks only for backwards compatibility.

Attaching labels to node connections 67

\aput*[labelsep]{angle}(pos){stuff}

stuff is positioned distance \pslabelsep above the node connec-

tion, given the convention that node connections point to the right.

\aput is a node-connection variant of \uput. For example:

Hypotenuse \pspolygon(0,0)(4,2)(4,0)

\pcline[linestyle=none](0,0)(4,2)

\aput{:U}{Hypotenuse}

\bput*[labelsep]{angle}(pos){stuff }

This is like \aput, but stuff is positioned below the node connec-

tion.

It is fairly common to want to use the default position and rotation with

these node connections, but you have to include at least one of these

arguments. Therefore, PSTricks contains some variants:

\mput*[refpoint]{stuff}

\Aput*[labelsep]{stuff}

\Bput*[labelsep]{stuff}

of \lput, \aput and \bput, respectively, that have no angle or positioning

argument. For example:

1

\cnode*(0,0){3pt}{A}

\cnode*(4,2){3pt}{B}

\ncline[nodesep=3pt]{A}{B}

\mput*{1}

Here is another:

Label \pcline{<->}(0,0)(4,2)

\Aput{Label}

Now we can compare \ncline with \ncLine, and \rnode with \Rnode.

First, here is a mathematical diagram with \ncLine and \Rnode:

Attaching labels to node connections 68

\[

\setlength{\arraycolsep}{1cm}

\def\tX{\tilde{\tilde{X}}}

\begin{array}{cc}

\Rnode{a}{(X-A,N-A)} & \Rnode{b}{(\tX,a)}\\[1.5cm]

\Rnode{c}{(X,N)} & \Rnode{d}{\LARGE(\tX,N)}\\[1.5cm]

\end{array}

\psset{nodesep=5pt,arrows=->}

\everypsbox{\scriptstyle}

\ncLine{a}{b}\Aput{a}

\ncLine{a}{c}\Bput{r}

\ncLine[linestyle=dashed]{c}{d}\Bput{b}

\ncLine{b}{d}\Bput{s}

\]

(X – A; N – A) (˜̃X; a)

(X; N) (˜̃X; N)

a

r

b

s

Here is the same one, but with \ncline and \rnode instead:

(X – A; N – A) (˜̃X; a)

(X; N) (˜̃X; N)

a

r

b

s

Driver notes: The node macros use \pstVerb and \pstverbscale.

Attaching labels to node connections 69

VIII Special Tricks

33 Coils and zigzags

The file pst-coil.tex/pst-coil.sty (and optionally the header file pst-coil.pro)
pst-coil defines the following graphics objects for coils and zigzags:

\pscoil*[par]{arrows}(x0,y0)(x1,y1)

\psCoil*[par]{angle1}{angle2}

\pszigzag*[par]{arrows}(x0,y0)(x1,y1)

These graphics objects use the following parameters:

coilwidth=dim Default: 1cm

coilheight=num Default: 1

coilarm=dim Default: .5cm

coilaspect=angle Default: 45

coilinc=angle Default: 10

All coil and zigzag objects draw a coil or zigzag whose width (diameter)

is coilwidth, and with the distance along the axes for each period (360

degrees) equal to

coilheight x coilwidth.

Both \pscoil and \psCoil draw a “3D” coil, projected onto the xz-axes.

The center of the 3D coil lies on the yz-plane at angle pcoilaspect to

the z-axis. The coil is drawn with PostScript’s lineto, joining points that

lie at angle coilinc from each other along the coil. Hence, increasing

coilinc makes the curve smoother but the printing slower. \pszigzag

does not use the coilaspect and coilinc parameters.

\pscoiland \pszigzag connect (x0,y0) and (x1,y1), starting and ending

with straight line segments of length coilarmA and coilarmB, resp. Set-

ting coilarm is the same as setting coilarmA and coilarmB.

Here is an example of \pscoil:

Special Tricks 70

